Updated Comparison of Energy Use & Emissions From Different Transportation Modes

October 2008

Submitted to:
American Bus Association
700 13th Street, NW
Suite 575
Washington, DC 20005

Prepared by:
M.J. Bradley & Associates LLC
1000 Elm Street, 2nd Floor
Manchester, NH 03101
Table of Contents

INTRODUCTION
1

1 **RESULTS OF ANALYSIS**
 4
 1.1 Energy Use & CO₂ Emissions
 4
 1.2 NOx and PM Emissions
 8

2 **DATA SOURCES**
 12
 2.1 Energy Use & CO₂ Emissions
 12
 2.1.1 NOx and PM Emissions
 13

3 **CALCULATION METHODOLOGY**
 16
 3.1 Energy Use & CO₂ Emissions
 16
 3.2 NOx and PM Emissions
 17

APPENDIX A - NTD Mode Definitions
Introduction

This analysis is intended to evaluate the environmental performance of Highway Motorcoach operations, by comparing the energy use and exhaust emissions of motorcoaches with the energy use and exhaust emissions of other common transportation vehicles/modes.

Including motorcoaches, a total of twelve transportation modes are included in the analysis, as follows:

- **Highway Motorcoach** - According to the American Bus Association vehicles in the motorcoach fleet are designed for long-distance travel, and are characterized by “integral construction with an elevated passenger deck located over a baggage compartment”. For this analysis the motorcoach mode includes motorcoach buses used for private charters, tours/sightseeing, scheduled inter-city service, and airport and commuter service between a central city and adjacent suburbs/airports.

- **Private Automobile** - for this analysis the private automobile mode includes all use of a personally-owned car or light truck for commuting and other travel.

- **Heavy Urban Rail** – A transit mode that uses self-propelled electric-powered passenger cars operating on an exclusive rail right-of-way, either below or above-ground, to provide scheduled service within an urban area. Typically the system is designed to accommodate very high passenger volumes, and trains are operated in multi-car sets. The electricity to power the vehicles is drawn either from overhead wires or from a power rail.

- **Light Rail** – A transit mode that uses self-propelled electric-powered passenger cars operating on an exclusive or shared above-ground rail right-of-way to provide scheduled service within an urban area. Typically the system is designed to accommodate lower passenger volumes than heavy rail, and passenger cars are operated singly or in two-car sets. The electricity to power the vehicles is drawn from overhead wires.

- **Commuter Rail** - A transit mode that uses electric or diesel-powered locomotives pulling passenger cars, and operating on an exclusive rail right-of-way, for local short-distance travel between a central city and adjacent suburbs.

- **Intercity Rail** - A transit mode that uses electric or diesel-powered locomotives pulling passenger cars, and operating on an exclusive rail right-of-way, for long-distance travel between cities.

- **Domestic Air Travel** – Scheduled plane service operating between U.S. cities. For this analysis international air travel is not included.

- **Urban Transit Bus** – A transit mode that includes the use of primarily diesel-powered, rubber-tired vehicles for fixed route scheduled service within an urban area, and usually operated in mixed traffic on city streets. The buses used for this mode are typically between 20 and 40 feet in length.

- **Electric Trolley Bus** - A transit mode that uses electric-powered rubber-tired vehicles for fixed route scheduled service within an urban area, and usually operated...
in mixed traffic on city streets. Electricity to power the vehicles is drawn from
overhead wires installed along the route.

- **Ferry Boat** - A transit mode that uses marine vessels to carry passengers and/or
vehicles over a body of water. Intercity ferryboat service is excluded, except for that
portion of such service that is operated by or under contract with a public transit
agency for predominantly commuter services.

- **Van Pool** - A transit mode that uses vans, small buses and other vehicles, operating
as a ride-sharing arrangement, to provide transportation to a group of individuals
traveling directly between their homes and a regular destination within the same
geographical area. For this analysis only vanpools operated by a public entity are
included.

- **Demand Response** – Shared-use transit service operating in response to calls from
passengers to a transit operator, who schedules a vehicle to pick up the passengers to
transport them to their destinations. This analysis only includes demand response
service operated by public transit agencies, primarily to provide “para-transit” service
to individuals with disabilities that preclude them from using fixed-route transit bus
service. For this analysis the demand response mode does not encompass private
taxi or private shared-ride van services.

This report is an update to a similar report issued in May 2007. This report uses updated
2006 and 2007 data not available for the previous report, but the results are similar to
those reported in 2007.

For all modes both energy use and emissions are expressed in terms of units per
passenger mile operated. The metrics used for energy intensity are passenger miles per
diesel-equivalent gallon\(^1\) (pass-mi/DEG) and btu\(^2\) per passenger mile (btu/pass-mi).

The metrics used for all exhaust emissions are grams of emissions per passenger mile
(g/pass-mi). This analysis includes emissions of carbon dioxide (CO\(_2\)), nitrogen oxides
(NO\(_x\)) and particulate matter (PM). Carbon dioxide is a greenhouse gas that has been
linked to global warming. The transportation sector is a significant contributor to total
man-made CO\(_2\) emissions. NO\(_x\) and PM are the two pollutants emitted by diesel engines
of most significant concern. NO\(_x\) combines in the atmosphere with volatile organic
hydrocarbons, in the presence of sunlight, to produce ground level ozone (smog). PM
has been shown to cause or exacerbate respiratory and cardiac disease, and has been
linked to an increased incidence of lung cancer and premature mortality.

\(^1\) This analysis compares modes that use different types of fuel, including diesel fuel, gasoline,
and electricity. Energy use for all modes has been expressed in terms of a “diesel equivalent
gallon” based on energy content. In this analysis one diesel equivalent gallon is defined as
138,000 btu, the energy content of a gallon of “typical” highway diesel fuel. One gallon of typical
highway gasoline contains 114,000 btu, or 0.826 diesel equivalent gallons. One kilowatt hour of
electricity is equal to 3,412 btu, so there are 40.45 kwh of electricity in one diesel equivalent
gallon.

\(^2\) A British Thermal Unit (btu) is a measure of energy. One btu is equivalent to 0.000293 kwh.
All of the data used for this analysis is publicly available. As discussed below the major sources of data include the Federal Transit Administration’s National Transit Database; the Department of Transportation, Bureau of Transportation Statistics, National Transportation Statistics; and a Coach Industry Census conducted by Nathan Associates for the American Bus Association (ABA). For most modes the data is from calendar year 2006, the most recent year available. The Coach Industry Census covered calendar year 2007.

3 See Appendix A for the mode definitions used for the National Transit Database (NTD). The modes included in this analysis for which data is included in the NTD are: Commuter Rail, Demand Response, Electric Trolley Bus, Ferry Boat, Heavy Urban Rail, Light Rail, Urban Transit Bus, and Van Pool.
1 Results of Analysis

1.1 Energy Use & CO₂ Emissions

Average energy use and CO₂ emissions by mode are shown in Table 1.1. Selected data from Table 1.1 is also summarized in Figures 1.1 – 1.3.

<table>
<thead>
<tr>
<th>MODE</th>
<th>Pass-mi/Gal**</th>
<th>Btu/pass-mi</th>
<th>CO₂ g/pass-mi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>low</td>
<td>AVG</td>
<td>high</td>
</tr>
<tr>
<td>Motorcoach</td>
<td>173.2</td>
<td>205.6</td>
<td>232.7</td>
</tr>
<tr>
<td>Van Pool</td>
<td>60.3</td>
<td>106.1</td>
<td>203.6</td>
</tr>
<tr>
<td>Heavy Rail</td>
<td>52.0</td>
<td>160.8</td>
<td>210.9</td>
</tr>
<tr>
<td>Commuter Rail</td>
<td>60.6</td>
<td>92.4</td>
<td>283.6</td>
</tr>
<tr>
<td>Intercity Rail (AMTRAK)</td>
<td>55.8</td>
<td>67.0</td>
<td>128.1</td>
</tr>
<tr>
<td>Car Pool - 2 person</td>
<td>36.3</td>
<td>54.3</td>
<td>111.4</td>
</tr>
<tr>
<td>Light Rail</td>
<td>4.0</td>
<td>120.5</td>
<td>198.9</td>
</tr>
<tr>
<td>Trolley Bus</td>
<td>55.1</td>
<td>105.6</td>
<td>125.2</td>
</tr>
<tr>
<td>Domestic Air Travel</td>
<td>44.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Car - Avg Trip</td>
<td>28.7</td>
<td>42.9</td>
<td>88.0</td>
</tr>
<tr>
<td>Transit Bus</td>
<td>4.4</td>
<td>31.4</td>
<td>124.1</td>
</tr>
<tr>
<td>Car - 1 Person</td>
<td>18.2</td>
<td>27.2</td>
<td>55.7</td>
</tr>
<tr>
<td>Ferry Boat</td>
<td>1.9</td>
<td>12.9</td>
<td>30.9</td>
</tr>
<tr>
<td>Demand Response</td>
<td>1.1</td>
<td>8.8</td>
<td>48.3</td>
</tr>
</tbody>
</table>

**Passenger miles per Diesel Equivalent gallon

Table 1.1 Energy Use and CO₂ Emissions, by Mode

In Table 1.1 the high and low figures for motorcoaches are based on averages for different industry segments (charter/tour/sight-seeing versus commuter/airport/intercity fixed route service). For the other public modes the high and low figures are based on the range of results from individual transit agencies in the NTD database. For private autos the averages are based on US fleet average fuel economy (22.4 MPG) while the high figures are based on the use of a “typical” sport utility vehicle (15 MPG) and the low figures are based on use of a hybrid car (46 MPG).

As shown, motorcoaches on average used 668 btu/pass-mi and produced 50 g/pass-mi of carbon dioxide. On average, motorcoaches use the least amount of energy and produce the lowest carbon dioxide emissions per passenger mile of any of the transportation modes analyzed.
Passenger Miles per Gallon of Fuel *

Figure 1.1 Passenger-Miles per Gallon of Fuel, by Mode

Average Energy Use (btu) Per Passenger Mile

Figure 1.2 Energy Use (btu) per Passenger-Mile, by Mode
Updated Comparison of Energy Use & Emissions from Different Transportation Modes

Average Carbon Dioxide Emissions (grams) Per Passenger Mile

Figure 1.3 CO₂ Emissions (g) per Passenger-Mile, by Mode

The most energy- and carbon dioxide-intensive mode is Demand Response at an average of 15,727 btu/pass-mi and 1,145 g CO₂/pass-mi. Van Pools on average produce almost twice as much carbon dioxide per passenger mile as motorcoaches, commuter rail produces more than three times as much, two-person car pools produce almost four times as much, and single commuters produce more than seven times as much.

Note that the calculation of passenger miles per gallon of fuel and btu/pass-mi for electric modes (heavy rail, light rail, trolley bus) is based on kilowatt hours of delivered electricity and therefore does not account for the total fuel energy used to generate the electricity. Comparison of these metrics for electric modes to gasoline and diesel modes is therefore somewhat misleading. The metric CO₂/pass-mi does account for all carbon dioxide produced by electricity generation and therefore provides a more relevant comparison between electric and diesel/gasoline modes.

Figures 1.4 and 1.5 show the range of energy use and CO₂ emissions from selected modes. As shown, while some modes have favorable energy use and carbon dioxide emissions on average, there can be significant variation from location to location. For example, of thirty-three agencies in the NTD database that operate van pools the worst performer produced over three times as much CO₂ per passenger mile as the best performer, primarily based on lower average passenger loads.

Likewise, actual emissions per passenger mile from shared rides and car pools are highly dependent on the vehicle used, with lower emissions from cars that have better average fuel economy.
Figure 1.4 Range of Energy Use (btu) per Passenger-Mile, Selected Modes

Figure 1.5 Range of CO₂ Emissions (g) per Passenger-Mile, Selected Modes

NOTE: Btu/passenger-mile for Commuter Rail does not account for efficiency of electricity production.
1.2 NOx and PM Emissions

NOx and PM emissions by mode are shown in Table 1.2. The data from Table 1.2 is also summarized in Figures 1.6, 1.7, 1.9 and 1.10.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Vehicle</th>
<th>Fleet Age</th>
<th>Fuel Used (% by Energy Content)</th>
<th>Miles per Diesel Equivalent Gallon</th>
<th>Passenger Miles per Diesel Equivalent Gallon</th>
<th>Emissions (g/passenger-mi)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gasoline</td>
<td>Diesel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Car-1 person</td>
<td>2007 Fleet Avg</td>
<td>100%</td>
<td>0%</td>
<td>27.2</td>
<td>27.2</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>2007 Model Year</td>
<td>100%</td>
<td>0%</td>
<td>27.2</td>
<td>27.2</td>
<td>0.004</td>
</tr>
<tr>
<td>Car Pool-2</td>
<td>US Average Car/Light Truck</td>
<td>2007 Fleet Avg</td>
<td>100%</td>
<td>0%</td>
<td>27.2</td>
<td>54.3</td>
</tr>
<tr>
<td></td>
<td>2007 Model Year</td>
<td>100%</td>
<td>0%</td>
<td>27.2</td>
<td>64.3</td>
<td>0.002</td>
</tr>
<tr>
<td>Van Pool</td>
<td>4-12 Passenger Van</td>
<td>2007 Fleet Avg</td>
<td>100%</td>
<td>0%</td>
<td>17.4</td>
<td>168.1</td>
</tr>
<tr>
<td></td>
<td>2007 Model Year</td>
<td>100%</td>
<td>0%</td>
<td>17.4</td>
<td>168.1</td>
<td>0.001</td>
</tr>
<tr>
<td>Transit Bus</td>
<td>40-ft Urban Transit Bus</td>
<td>2007 Fleet Avg</td>
<td>100%</td>
<td>0%</td>
<td>2.9</td>
<td>31.4</td>
</tr>
<tr>
<td></td>
<td>2007 Model Year</td>
<td>100%</td>
<td>0%</td>
<td>2.9</td>
<td>31.4</td>
<td>0.002</td>
</tr>
<tr>
<td>Motorcoach</td>
<td>45-ft Motor Coach Bus</td>
<td>2007 Fleet Avg</td>
<td>100%</td>
<td>0%</td>
<td>5.7</td>
<td>108.8</td>
</tr>
<tr>
<td></td>
<td>2007 Model Year</td>
<td>100%</td>
<td>0%</td>
<td>5.7</td>
<td>108.8</td>
<td>0.001</td>
</tr>
<tr>
<td>Demand</td>
<td>"Out Away" Van 10-14,000 lb GWR</td>
<td>2007 Fleet Avg</td>
<td>26%</td>
<td>74%</td>
<td>6.6</td>
<td>8.8</td>
</tr>
<tr>
<td>Response</td>
<td>2007 Model Year</td>
<td>26%</td>
<td>74%</td>
<td>6.8</td>
<td>8.8</td>
<td>0.005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mode</th>
<th>Vehicle</th>
<th>Fleet Age</th>
<th>Fuel Used (% by Energy Content)</th>
<th>Miles per Diesel Equivalent Gallon</th>
<th>Passenger Miles per Diesel Equivalent Gallon</th>
<th>Emissions (g/passenger-mi)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Diesel</td>
<td>Electricity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferry/Barge</td>
<td>Harbor Craft</td>
<td>2007 Fleet Avg</td>
<td>100%</td>
<td>0%</td>
<td>12.8</td>
<td>1.46</td>
</tr>
<tr>
<td>Air</td>
<td>Jet aircraft</td>
<td>2007 Fleet Avg</td>
<td>100%</td>
<td>0%</td>
<td>44.0</td>
<td>0.05</td>
</tr>
<tr>
<td>Commuter Rail</td>
<td>Locomotive</td>
<td>2007 Fleet Avg</td>
<td>65%</td>
<td>35%</td>
<td>92.4</td>
<td>0.07</td>
</tr>
<tr>
<td>InterCity Rail</td>
<td>Locomotive</td>
<td>2007 Fleet Avg</td>
<td>85%</td>
<td>15%</td>
<td>67.0</td>
<td>0.10</td>
</tr>
<tr>
<td>Heavy Rail</td>
<td>Electric propulsion car</td>
<td>2007 Fleet Avg</td>
<td>0%</td>
<td>100%</td>
<td>160.0</td>
<td>0.04</td>
</tr>
<tr>
<td>Light Rail</td>
<td>Electric propulsion car</td>
<td>2007 Fleet Avg</td>
<td>0%</td>
<td>100%</td>
<td>120.6</td>
<td>0.06</td>
</tr>
<tr>
<td>Trolley Bus</td>
<td>Electric trolley</td>
<td>2007 Fleet Avg</td>
<td>0%</td>
<td>100%</td>
<td>106.6</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Table 1.2 PM and NOx Emissions, by Mode

As shown in Figures 1.6 and 1.7 the existing fleet of motorcoaches currently produces, on average, 0.44 g/pass-mi NOx and 0.011 g/pass-mi PM. Only gasoline-powered van pools and car pools, as well as the pure electric modes (light rail, heavy rail, trolley bus) have lower NOx emissions per passenger mile. With respect to PM, the gasoline-powered modes, including single commuters, are the only modes that have lower PM emissions per passenger mile than the existing motorcoach fleet.
Figure 1.6 Current Fleet Average NOx Emissions (g) per Passenger Mile, by Mode

Figure 1.7 Current Fleet Average PM Emissions (g) per Passenger Mile, by Mode
As illustrated in Figure 1.8 recent changes in U.S. EPA new vehicle and engine standards have dramatically reduced per-mile NOx emissions from new cars and per-mile PM and NOx emissions from new motorcoaches compared to the current fleet average. As more and more new vehicles enter the fleet and displace current vehicles in the next ten years NOx and PM emissions per passenger mile from motorcoach and private vehicle modes will fall. Average NOx and PM emissions per passenger mile from brand new (2007+ model year) vehicles are shown in Figures 1.9 and 1.10 for onroad modes.

As shown, compared to brand new motorcoaches only new gasoline-powered cars and Van Pools produce lower NOx emissions per passenger-mile and only Van Pools produce lower PM emissions per passenger-mile.
Figure 1.9 NOx Emissions (g) per Passenger Mile from New (2007+) Vehicles, by Mode

Figure 1.10 PM Emissions (g) per Passenger Mile from New (2007+) Vehicles, by Mode
2 Data Sources

2.1 Energy Use & CO₂ Emissions

For the commuter rail, demand response, electric trolley bus, ferry boat, heavy rail, light rail, urban transit bus, and van pool modes all energy use and operating data used in the analysis was taken from the 2006 National Transit Database, Tables 17 and 19. This database lists financial and operating data from virtually all transit agencies that receive federal operating and capital assistance. Each table contains rows of data specific to a group of vehicles operated in a single mode by a different U.S. transit agency.

Table 2.1 Data Used for Transit Modes

<table>
<thead>
<tr>
<th>MODE</th>
<th># of Agencies</th>
<th># of Vehicles</th>
<th>Total (x100,000) DEG</th>
<th>Pass-Mi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Von Pool</td>
<td>33</td>
<td>5,293</td>
<td>4.3</td>
<td>466</td>
</tr>
<tr>
<td>Commuter Rail</td>
<td>14</td>
<td>8,313</td>
<td>91.3</td>
<td>14,601</td>
</tr>
<tr>
<td>Light Rail</td>
<td>7</td>
<td>4,609</td>
<td>98.5</td>
<td>9,103</td>
</tr>
<tr>
<td>Trolley Bus</td>
<td>4</td>
<td>1,211</td>
<td>15.0</td>
<td>1,806</td>
</tr>
<tr>
<td>Transit Bus</td>
<td>364</td>
<td>42,546</td>
<td>556.3</td>
<td>17,483</td>
</tr>
<tr>
<td>Ferry Boat</td>
<td>7</td>
<td>50</td>
<td>24.3</td>
<td>314</td>
</tr>
<tr>
<td>Demand Response</td>
<td>245</td>
<td>5,665</td>
<td>24.3</td>
<td>214</td>
</tr>
</tbody>
</table>

* Miles per Diesel Equivalent gallon (based on energy content)

The following fields from Table 17 were used: ID, Mode, Vehicles Operated in Maximum Service (VOMS), Type of Service (TOS), and Sources of Energy (diesel, gasoline, LPG, LNG, CNG, kerosene, biodiesel, electricity, battery). For all liquid and gaseous sources of energy the table listing is total annual gallons of fuel used by that group of vehicles (for CNG it is diesel equivalent gallons of fuel) and for electric modes it is total annual kilowatt hours. The following fields from Table 19 were used: ID, Mode, VOMS, Annual Vehicle Revenue Miles, Annual Vehicle Revenue Hours, Unlinked Passenger Trips, and Annual Passenger Miles.

ID, Mode, and VOMS were used to match data from each table for the same agency and vehicles. A number of individual rows of data were excluded because required data from one or more fields was missing. The excluded data represented less than one percent of all data in the database. Table 2.1 shows the number of separate agencies and vehicles included in the analyzed data set by mode.

For all other modes other than motorcoach, industry total data was taken from the U.S. Department of Transportation, Bureau of Transportation Statistics, National Transportation Statistics, which were downloaded from the web on September 16, 2008. Data was used from the following tables: Domestic Air Travel, Table 4-21 (2006 data); Personal Autos, Table 4-22 (2006 data); Intercity Rail (AMTRAK) Tables 4-26 (passenger miles and fuel, 2005 data) and 4-18 (train miles, 2005 data). For each mode the following data was used from the appropriate table(s): Total Annual Vehicle Miles, Total Fuel Consumed (gallons for diesel and gasoline, and kwh for electricity), and Total Annual Passenger Miles.

In order to evaluate the difference between AMTRAK North East Corridor operations and operations in all other AMTRAK corridors additional data was taken from the AMTRAK Monthly Performance Report for November 2006, February 2, 2007, page A-1.3, including: Revenue and Revenue per Passenger Mile for each type of operation. Passenger miles for each type of operation were calculated by dividing total revenue by
This analysis showed that year-to-date as of November 2006 29% of all passenger miles were on the Northeast corridor. This percentage was applied to the 2001 BTS passenger mile data to calculate approximate passenger miles on the North East Corridor. The analysis also assumed that all electricity used by AMTRAK in 2001 was for North East Corridor operations, and all diesel fuel used was for operations in other corridors.

The BTS data for passenger cars was used to calculate current fleet average fuel economy (22.4 miles per gasoline gallon, or 27.2 miles per diesel equivalent gallon). In order to evaluate the range of energy use per passenger mile from different vehicles additional data on new EPA combined city/highway fuel economy ratings was taken from www.fueleconomy.gov for the Toyota Prius hybrid car and Jeep Grand Cherokee 4WD and GMC Yukon 1500 4WD sport utility vehicles. This data shows that EPA estimates a Toyota Prius will get 46 mpg in combined city/highway driving (55.7 miles per DEG) and that both the and Jeep Grand Cherokee and GMC Yukon will get 15 mpg in combined city/highway driving (18.2 miles per DEG). These numbers were used to calculate minimum and maximum fuel use and CO2 emissions per mile and per passenger mile from private autos.

Data on motorcoach miles operated and fuel consumed was taken from the Draft Motorcoach Industry Census 2007, Third Benchmarking Study of the Motorcoach Industry in the United States and Canada, September 2008, which was conducted by Nathan Associates for the American Bus Association. The data on coach industry mileage, fuel use, average load factor, and passenger miles used in the analysis is shown Table 2.2.

2.1 NOx and PM Emissions

NOx and PM emission factors (grams per mile, g/mi) for all onroad vehicles (private autos, van pool vehicles, demand response vehicles, transit buses, and coach buses) were derived using U.S. EPA’s MOBILE6.2 emissions model (available at http://www.epa.gov/omswww/m6.htm). Major assumptions used when running the model include: no I/M program, no anti-tampering program, gasoline RVP of 9.0, and diesel sulfur content 15-ppm.

Based on significant changes to EPA emission standards over the past few years new cars, trucks, and buses have much lower emissions than older vehicles. For this analysis we calculated current (2007) fleet average emission factors, as well as average emission factors for new (2007 model year) vehicles.

<table>
<thead>
<tr>
<th>Service Type</th>
<th>Total Motorcoach Miles</th>
<th>Total Motorcoach Fuel Consumption</th>
<th>Miles per Gallon</th>
<th>Passenger Miles</th>
<th>Avg Passenger Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charter, Tour, Sightseeing</td>
<td>1,011,960,000</td>
<td>179,000,000</td>
<td>5.68</td>
<td>41,416,000,000</td>
<td>41.0</td>
</tr>
<tr>
<td>Fixed Route</td>
<td>727,960,000</td>
<td>119,000,000</td>
<td>5.66</td>
<td>24,090,000,000</td>
<td>30.6</td>
</tr>
<tr>
<td>Industry Total</td>
<td>1,739,920,000</td>
<td>398,000,000</td>
<td>5.67</td>
<td>65,506,000,000</td>
<td>38.4</td>
</tr>
</tbody>
</table>

Fixed Route = airport shuttle, commuter, intercity, special operations
NOx and PM emission factors (grams per gallon, g/gal) for all nonroad vehicles (ferry boats, aircraft, diesel commuter rail and diesel intercity rail) were taken from the U.S. EPA’s, Documentation for Aircraft, Commercial Marine Vessel, Locomotive, and Other Nonroad Components of the National Emissions Inventory, Volume 1 – Methodology (September 30, 2005).

For aircraft the factors are given by EPA as pounds of emissions per “landing and take-off” (lb/LTO). To calculate g/gal factors we used an average figure of 650 kg (1,430 lb) of fuel/LTO and 6.9 lb/gallon for the weight of fuel. The average LTO fuel usage is from data compiled by ICAO Committee on Aviation and Environmental Protection. This methodology may overstate the average emissions from aircraft since relative emissions during take-off and landing may be higher than during cruise. However there is virtually no published data on aircraft cruising emissions that could be used to calculate a more accurate average figure.

For electric modes (electric commuter rail, electric intercity rail, heavy rail, light rail, trolley bus) NOx and PM emissions per kwh of electricity used were calculated based on the US average emission rates for electric utilities in 2007. The NOx emission rate (lb/Mwh) was taken from U.S. Department of Energy Report #DOE/EIA-0383(2007), Table 8. The PM emission rate (lb/Mwh) was calculated by dividing total electric utility PM from the 2001 EPA National Emissions Inventory (tons) by total electric utility output (Mwh) in 2001. The total electric utility output was taken from US DOE Report #DOE/EIA-0383(2004), Table 8. Emission rates from electricity production vary significantly based on the fuel/process used. Hydroelectric plants produce virtually no NOx or PM emissions, while coal plants produce significant amounts. The US average rates used in this analysis may not be accurate for specific regions of the country. In particular actual emissions rates will likely be lower in the northwest and higher in the midwest.

The emissions factors used in the analysis are shown in Table 2.3.
Table 2.3 NOx and PM Emissions Factors Used

<table>
<thead>
<tr>
<th>Mode</th>
<th>Vehicle</th>
<th>Fleet Age</th>
<th>Source</th>
<th>Emissions Rates</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gasoline (g/mile)</td>
<td>PM</td>
<td>NOx</td>
</tr>
<tr>
<td>Passenger Car</td>
<td>US Average Car/Light Truck</td>
<td>2007 Fleet Avg</td>
<td>A</td>
<td>0.0046</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2007 Model Year</td>
<td>A</td>
<td>0.0042</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td>Van Pool</td>
<td>8-12 Passenger Van</td>
<td>2007 Fleet Avg</td>
<td>A</td>
<td>0.0057</td>
<td>1.31</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2007 Model Year</td>
<td>A</td>
<td>0.0037</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>Transit Bus</td>
<td>40-ft Urban Transit Bus</td>
<td>2007 Fleet Avg</td>
<td>A</td>
<td>0.3637</td>
<td>15.84</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2007 Model Year</td>
<td>A</td>
<td>0.0243</td>
<td>5.17</td>
<td></td>
</tr>
<tr>
<td>Motorcoach</td>
<td>45-ft Motor Coach Bus</td>
<td>2007 Fleet Avg</td>
<td>A</td>
<td>0.3637</td>
<td>15.84</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2007 Model Year</td>
<td>A</td>
<td>0.0243</td>
<td>5.17</td>
<td></td>
</tr>
<tr>
<td>Demand Response</td>
<td>Cut Away Van 10-14,000 lb GVWR</td>
<td>2007 Fleet Avg</td>
<td>A</td>
<td>0.0843</td>
<td>4.78</td>
<td>0.1059</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2007 Model Year</td>
<td>A</td>
<td>0.0134</td>
<td>0.88</td>
<td>0.0069</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mode</th>
<th>Vehicle</th>
<th>Fleet Age</th>
<th>Source</th>
<th>Emissions Rates</th>
<th>Diesel (g/gal)</th>
<th>Electric (g/kwh)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM</td>
<td>NOx</td>
</tr>
<tr>
<td>Ferry Boat</td>
<td>Type 2 Harbor Craft</td>
<td>2007 Fleet Avg</td>
<td>B</td>
<td>18.78</td>
<td>446.93</td>
<td></td>
</tr>
<tr>
<td>Air</td>
<td>Jet aircraft</td>
<td>2007 Fleet Avg</td>
<td>B, C</td>
<td>2.20</td>
<td>40.59</td>
<td></td>
</tr>
<tr>
<td>Commuter Rail</td>
<td>Locomotive</td>
<td>2007 Fleet Avg</td>
<td>B, D</td>
<td>6.70</td>
<td>270.00</td>
<td>0.18</td>
</tr>
<tr>
<td>InterCity/Rail</td>
<td>Locomotive</td>
<td>2007 Fleet Avg</td>
<td>B, D</td>
<td>6.70</td>
<td>270.00</td>
<td>0.18</td>
</tr>
<tr>
<td>Heavy Rail</td>
<td>Electric propulsion car</td>
<td>2007 Fleet Avg</td>
<td>D</td>
<td>0.18</td>
<td>0.671</td>
<td></td>
</tr>
<tr>
<td>Light Rail</td>
<td>Electric propulsion car</td>
<td>2007 Fleet Avg</td>
<td>D</td>
<td>0.18</td>
<td>0.671</td>
<td></td>
</tr>
<tr>
<td>Trolley Bus</td>
<td>Electric trolley</td>
<td>2007 Fleet Avg</td>
<td>D</td>
<td>0.18</td>
<td>0.671</td>
<td></td>
</tr>
</tbody>
</table>
3 Calculation Methodology

3.1 Energy Use & CO₂ Emissions

The first step in the analysis was to convert Total Annual Fuel used by each mode to units of Diesel Equivalent Gallons (DEG), using Equation 1 for liquid fuels and Equation 2 for electricity:

\[
\text{Annual DEG} = \frac{\text{Fuel Energy Content (btu/gal)}}{\text{Diesel Energy Content (btu/gal)}} \times \text{Annual Fuel (gal)}
\]

\[
\text{Annual DEG} = \frac{\text{Annual Energy (kwh) \times 3,412 btu/kwh}}{\text{Diesel Energy Content (btu/gal)}}
\]

The energy content of the relevant fuels is shown in Table 3.1

The energy intensity metrics presented in the analysis were calculated using Equations 3 and 4:

\[
\text{Passenger Miles per DEG (Pass-mi/DEG)} = \frac{\text{Annual Passenger Miles}}{\text{Annual DEG}}
\]

\[
\text{Btu per Passenger Mile (btu/pass-mi)} = \frac{\text{Annual DEG \times 138,000 btu/DEG}}{\text{Annual Passenger Miles}}
\]

For all liquid and gaseous fuels carbon dioxide emissions per gallon of fuel burned were calculated using Equation 5 and total carbon dioxide emissions for each mode were calculated using Equation 6. The fuel properties used in Equation 5 are shown in Table 3.1. Carbon dioxide emissions per passenger mile were calculated using Equation 7.

\[
\text{CO₂ (g/gal)} = \frac{44 \times (\text{CO₂ mw})}{12 \times (\text{C mw})} \times 453.6 \text{ g/lb} \times \text{Fuel Density (lb/gal)} \times \text{Fuel Wt % Carbon}
\]

\[
\text{Total CO₂ (g)} = \sum \left(\text{CO₂ (g/gal)} \times \text{Annual Gallons} \right)_{\text{All fuels}} + \text{Electricity (kwh)} \times 600.6 \text{ g CO₂/kwh}
\]

\[
\text{CO₂ per Passenger Mile (g/pass-mi)} = \frac{\text{Total CO₂ (g)}}{\text{Annual Passenger Miles}}
\]

4 Note that CNG fuel usage in the NTD database was already expressed in units of DEG

5 This is the US industry average for electricity production in 2007, per Report # DOE/EIA-0383(2007). Depending on the mix of fuels for electricity production regional values could be lower or higher.
Table 3.1 Fuel Properties Used in the Analysis

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Energy (btu/gal)</th>
<th>Density (lb/gal)</th>
<th>Weight % Carbon</th>
<th>CO₂ g/gal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel</td>
<td>138,000</td>
<td>7.1</td>
<td>87%</td>
<td>10,274</td>
</tr>
<tr>
<td>Gasoline</td>
<td>114,000</td>
<td>6.0</td>
<td>85%</td>
<td>8,482</td>
</tr>
<tr>
<td>LPG</td>
<td>91,330</td>
<td>4.4</td>
<td>82%</td>
<td>6,042</td>
</tr>
<tr>
<td>LNG</td>
<td>73,500</td>
<td>3.2</td>
<td>75%</td>
<td>4,017</td>
</tr>
<tr>
<td>CNG (DEG)</td>
<td>138,000</td>
<td>6.0</td>
<td>75%</td>
<td>7,517</td>
</tr>
<tr>
<td>Kerosene</td>
<td>135,000</td>
<td>6.9</td>
<td>86%</td>
<td>9,935</td>
</tr>
<tr>
<td>B20 Biodiesel</td>
<td>135,613</td>
<td>7.0</td>
<td>84%</td>
<td>9,748</td>
</tr>
</tbody>
</table>

3.2 NOx and PM Emissions

For onroad vehicle/modes powered by diesel fuel and gasoline, NOx and PM emissions per passenger-mile (g/pass-mi) were calculated using Equation 8. This analysis assumed that all passenger cars and van pool vehicles are powered by gasoline and that all transit buses and coach buses are powered by diesel fuel.

\[
\text{Emissions (g/pass-mi) = Emissions Rate (g/mi) x mi/DEG ÷ pass-mi/DEG}
\]

Equation 8

For the Demand Response mode approximately 26% of fuel used nationally is gasoline or natural gas and 74% is diesel. For this mode, average emissions were calculated using Equation 9.

\[
\text{Emissions (g/pass-mi) = (0.74 x Diesel (g/pass-mi)) ÷ (0.26 x Gasoline (g/pass-mi))}
\]

Equation 9

For nonroad vehicles/modes powered by diesel fuel NOx and PM emissions per passenger-mile (g/pass-mi) were calculated using Equation 10:

\[
\text{Emissions (g/pass-mi) = Emissions Rate (g/DEG) ÷ pass-mi/DEG}
\]

Equation 10

For vehicles/modes powered by electricity NOx and PM emissions per passenger-mile (g/pass-mi) were calculated using Equation 11:

\[
\text{Emissions (g/pass-mi) = Emissions Rate (g/kwh) x 40.45 kwh/DEG ÷ pass-mi/DEG}
\]

6 In 2006, approximately 21% of the fuel (DEG) used to power transit buses was natural gas. This analysis assumes that the emissions from the natural gas vehicles in the fleet are accounted for in the MOBILE6.2 fleet average diesel bus emissions factors. To the extent that they are not, this analysis may slightly overstate average PM and NOx emissions from transit buses.

7 MOBILE6.2 does not include emissions factors for natural gas vehicles. This analysis assumes that emissions levels from light-duty natural gas engines are similar to those from light-duty gasoline engines.
Equation 11

Commuter Rail and Intercity Rail vehicles can be powered by either electricity or diesel. For these modes, average emissions were calculated using Equation 12:

Emissions (g/pass-mi) = (% Diesel x Diesel (g/pass-mi)) + (% Electricity x Electricity (g/pass-mi))

Equation 12
National Transit Database Mode Definitions

Buses (Urban Transit Bus)
Vehicle Type: Rubber-tired passenger vehicles powered by diesel, gasoline, battery or alternative fuel engines contained within the vehicle. Vehicles in this category do not include articulated, double-decked, or school buses.

Commuter Rail
A transit mode that is an electric or diesel propelled railway for urban passenger train service consisting of local short distance travel operating between a central city and adjacent suburbs. Service must be operated on a regular basis by or under contract with a transit operator for the purpose of transporting passengers within urbanized areas (UZAs), or between urbanized areas and outlying areas.
Such rail service, using either locomotive hauled or self-propelled railroad passenger cars, is generally characterized by:

- Multi-trip tickets
- Specific station to station fares
- Railroad employment practices, and
- Usually only one or two stations in the central business district.

It does not include:

- Heavy rail (HR) rapid transit, or
- Light rail (LR) / streetcar transit service.

Intercity rail service is excluded, except for that portion of such service that is operated by or under contract with a public transit agency for predominantly commuter services. Predominantly commuter a service means that for any given trip segment (i.e., distance between any two stations), more than 50 percent of the average daily ridership travels on the train at least three times a week. Only the predominantly commuter service portion of an intercity route is eligible for inclusion when determining commuter rail (CR) route miles.

Demand Response
Shared use transit service operating in response to calls from passengers or their agents to the transit operator, who schedules a vehicle to pick up the passengers to transport them to their destinations.

Ferryboat
A transit mode comprised of vessels carrying passengers and / or vehicles over a body of water that are generally steam or diesel powered.
Intercity ferryboat (FB) service is excluded, except for that portion of such service that is operated by or under contract with a public transit agency for predominantly commuter services. Predominantly commuter a service means that for any given trip segment (i.e., distance between any two piers), more than 50 percent of the average daily ridership travels on the ferryboat on the same day. Only the predominantly commuter service portion of an intercity route is eligible for inclusion when determining ferryboat (FB) route miles.
Comparison of Energy Use & Emissions from Different Transportation Modes

APPENDIX A

Ferryboats
Vehicle Type: Vessels for carrying passengers and / or vehicles over a body of water. The vessels are generally steam or diesel powered conventional ferry vessels. They may also be hovercraft, hydrofoil and other high speed vessels.

Heavy Rail (Heavy Urban Rail)
A transit mode that is an electric railway with the capacity for a heavy volume of traffic. It is characterized by:

- High speed and rapid acceleration passenger rail cars operating singly or in multi-car trains on fixed rails
- Separate rights-of-way (ROW) from which all other vehicular and foot traffic are excluded
- Sophisticated signaling, and
- High platform loading.

Heavy Rail Passenger Cars
Vehicle Type: Rail cars with:

- Motive capability
- Driven by electric power taken from overhead lines or third rails
- Configured for passenger traffic

Usually operated on exclusive right-of-way (ROW).

Light Rail
A transit mode that typically is an electric railway with a light volume traffic capacity compared to heavy rail (HR). It is characterized by:

- Passenger rail cars operating singly (or in short, usually two car, trains) on fixed rails in shared or exclusive right-of-way
- Low or high platform loading, and
- Vehicle power drawn from an overhead electric line via a trolley or a pantograph.

Light Rail Vehicles
Vehicle Type: Rail cars with:

- Motive capability
- Usually driven by electric power taken from overhead lines
- Configured for passenger traffic

Usually operating on exclusive rights-of-way (ROW).

Trolleybus (Electric Trolley Bus)
A transit mode comprised of electric rubber-tired passenger vehicles, manually steered and operating singly on city streets. Vehicles are propelled by a motor drawing current through overhead wires via trolleys, from a central power source not onboard the vehicle.

Trolleybuses
Vehicle Type: Rubber-tired, electrically powered passenger vehicles operated on city streets drawing power from overhead lines with trolleys.
APPENDIX A

Vanpool
A transit mode comprised of vans, small buses and other vehicles operating as a ride sharing arrangement, providing transportation to a group of individuals traveling directly between their homes and a regular destination within the same geographical area. The vehicles shall have a minimum seating capacity of seven persons, including the driver. For inclusion in the NTD, it is considered mass transit service if it:

- Is operated by a public entity, or
- Is one in which a public entity owns, purchases, or leases the vehicle(s).

Vanpool(s) (VP) must also be in compliance with mass transit rules including Americans with Disabilities Act (ADA) provisions, and be open to the public and that availability must be made known. Other forms of public participation to encourage ridesharing arrangements, such as:

- The provision of parking spaces
- Use of high occupancy vehicle (HOV) lanes
- Coordination or clearing house service, do not qualify as public vanpools.

Vanpool Service
Transit service operating as a ride sharing arrangement, providing transportation to a group of individuals traveling directly between their homes and a regular destination within the same geographical area. The vehicles shall have a minimum seating capacity of seven persons, including the driver. Vanpool(s) must also be open to the public and that availability must be made known. Does not include ridesharing coordination.